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‘The Blob’, a mass of anomalously warm water in the Northeast Pacific Ocean peaking from 2014 to 2016, caused a decrease
in primary productivity with cascading effects on the marine ecosystem. Among the more obvious manifestations of the
event were seabird breeding failures and mass mortality events. Here, we used corticosterone in breast feathers (fCort),
grown in the winter period during migration, as an indicator of nutritional stress to investigate the impact of the Blob on
two sentinel Pacific auk species (family Alcidae). Feathers were collected from breeding females over 8 years from 2010 to
2017, encompassing the Blob period. Since Pacific auks replace body feathers at sea during the migratory period, measures
of fCort provide an accumulated measure of nutritional stress or allostatic load during this time. Changes in diet were also
measured using δ15N and δ13C values from feathers. Relative to years prior to the Blob, the primarily zooplanktivorous Cassin’s
auklets (Ptychoramphus aleuticus) had elevated fCort in 2014–2017, which correlated with the occurrence of the Blob and a
recovery period afterwards, with relatively stable feather isotope values. In contrast, generalist rhinoceros auklets (Cerorhinca
monocerata) displayed stable fCort values across years and increased δ15N values during the Blob. As marine heatwaves
increase in intensity and frequency due to climate change, this study provides insight into the variable response of Pacific
auks to such phenomena and suggests a means for monitoring population-level responses to climatological variation.
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Introduction
Marine heatwaves have caused major disruptions to ocean
ecosystems (Lotze et al., 2019) and are now occurring
with increasing frequency and intensity with direct links
to global warming (Joh and Di Lorenzo, 2017; Oliver et
al., 2018; Smale et al., 2019). In 2013, an enormous mass
of unusually warm water, dubbed ‘the Blob’, formed in the
Pacific Ocean, moving closer to shore and affecting nearshore
environments in late 2013 and peaking in intensity from
2014 to 2016 (Di Lorenzo and Mantua, 2016; Kintisch,
2015). The Blob emerged from the broader Pacific Decadal
Oscillation of climate variability characterized by warm and
cool periods (Joh and Di Lorenzo, 2017; Laufkötter et al.,
2020). However, the Blob was larger in scale and intensity
and persisted over a longer timeframe (Joh and Di Lorenzo,
2017; Laufkötter et al., 2020). This major climatic event
was associated with reduced delivery of nutrients from
the sub-Arctic to lower latitudes, resulting in decreased
primary production (Du and Peterson, 2018; Suryan et al.,
2021). These impacts at the base of the food web cascaded
across the entire ecosystem, ultimately leading to unprece-
dented die-offs of marine predators at higher trophic levels
(Kintisch, 2015).

Seabirds have long been considered ‘sentinels’ of marine
environmental conditions (Hazen et al., 2019) as their
position atop the marine food web makes them sensitive
to environmental changes from bottom-up effects (Velarde et
al., 2019). Since the 1980s, extreme warming events have had
far-reaching effects on the survival, phenology and breeding
success of many seabird species. For example, a strong El
Niño in 1997 led to the starvation of thousands of short-
tailed shearwaters (Puffinus tenuirostris), which washed up
emaciated on shorelines of the southern Bering Sea and Gulf
of Alaska (Baduini et al., 2001). More recently, the Blob
was correlated with breeding failures and mass mortalities
of common murres (Uria aalge), Cassin’s auklets (Cerorhinca
monocerata) and red phalaropes (Phalaropus fulicarius) in
the Northeastern Pacific Ocean (Drever et al., 2018; Jones et
al., 2018; Piatt et al., 2020). These die-offs are hypothesized
to be a direct result of bottom-up effects driven by reductions
in food availability and nutritional quality (Jones et al., 2018;
Piatt et al., 2020). In addition to increased mortality, extreme
marine climate events may drive reductions in the productiv-
ity of surviving individuals (Fairhurst et al., 2017; Sorensen
et al., 2009; Sydeman et al., 2006; Williams et al., 2015)
because they are left physiologically ill-prepared for breed-
ing (Borstad et al., 2011; Carle et al., 2015; Sorensen
et al., 2009).

In this study, we compared the physiological responses
to variation in ocean climate between two species of auks
(family Alcidae), the Cassin’s auklet and rhinoceros auklet (C.
monocerata), breeding on Triangle Island, British Columbia,
Canada (Rodway, 1991). We focused on female auks because
their primary reproductive traits, particularly egg production

and lay date, may be affected in warmer years (Hipfner,
2008; Hipfner et al., 2020a). In both species, we measured
corticosterone levels in feathers (fCort) grown in winter dur-
ing migration (Landys et al., 2006; Wingfield et al., 1998).
Corticosterone is the principal hormonal mediator of allosta-
sis or physiological stress in wild birds (Dallman et al.,
1993), but when elevated can also play an adaptive role in
daily metabolic regulation and energy balance, thus allow-
ing individuals to respond to environmental stochasticity
(Wingfield et al., 1998). Corticosterone levels measured in
feathers have been used as indicators of physiological and
nutritional stress (Romero and Fairhurst, 2016; Will et al.,
2015) and as proxies of population-level health (Fairhurst
et al., 2017). Recently, increased fCort has been linked to
increases in foraging and nutritional stress in rhinoceros
auklets (Will et al., 2015). Although seabirds may experience
the effects of marine heatwaves year-round, fCort and feather
isotope measurements in this study provide insights into pre-
breeding conditions of surviving individuals as feathers are
grown during the migratory period in February and March,
just prior to spring breeding (April in Cassin’s auklets and
May in rhinoceros auklets). Variation in fCort can there-
fore reflect the pre-breeding, oceanic conditions experienced
when individuals ranged throughout the Northeast Pacific
from California to Alaska (Hipfner et al., 2020b; Studholme
et al., 2019).

Using an AICc model selection framework, we examined
how fCort in the two species was affected by annual oceanic
conditions and diet, the latter based on feather δ15N and δ13C
values (Hipfner et al., 2014; Sorensen et al., 2009). Feather
δ15N may reflect increases with trophic levels, while δ13C, in
addition to smaller trophic effects, also reflects relative use
of benthic versus pelagic prey sources (Deniro and Epstein,
1981; Hobson et al., 1994). This study encompassed the
temporal entirety of the Blob through its peak in 2014–
2016, and after its decline in 2017, as well as preceding cool-
water years in 2010, 2011 and 2013, which provide a point
of contrast (Di Lorenzo and Mantua, 2016; Kintisch, 2015;
Yang et al., 2018). The Blob formed offshore in 2013, outside
of the migratory range of both auks, then moved progressively
eastwards towards the North American coast near the end
of 2013, overlapping with the overwintering range of the
birds and remaining there until its decline in late 2016 (Smale
et al., 2019; Studholme et al., 2019). Previous studies indicate
that zooplanktivorous seabirds, such as the Cassin’s auklets,
sometimes exhibit stronger behavioural and demographic
responses to climatic variation than more generalist seabirds,
such as the rhinoceros auklets (Morrison et al., 2011; Will
et al., 2020). This is because when overall ocean biomass
decreases, generalist feeders can take prey from multiple
species and trophic levels, unlike the Cassin’s auklets that
rely on specific copepod species to meet dietary requirements
(Kitaysky and Golubova, 2000; Will et al., 2020). Therefore,
we predicted greater interannual variation in fCort levels in
Cassin’s auklets than in rhinoceros auklets and a peak in fCort
at the crest of the Blob around 2015.
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Methods
Data collection
This study took place on Triangle Island, British Columbia,
Canada (50◦ 52′ N, 129◦ 05′ W), in the traditional territo-
ries of the Kwakwaka’wakw indigenous people. The island
supports the world’s largest breeding colony of Cassin’s auk-
lets, with more than half a million pairs (Rodway, 1991)
and a large rhinoceros auklet breeding colony (Gaston and
Dechesne, 2020). Breast feathers were collected primarily in
June of 2010, 2011 and 2014–2017 for individual Cassin’s
auklets and in June of 2013–2017 for rhinoceros auklets
(see Appendix Table A1). Birds were removed from marked
breeding burrows, measured and up to eight breast feath-
ers sampled by pulling quickly at the base of the calamus.
Peak breast feather replacement in both species occurs in
February–March (Ainley et al., 2020; Gaston and Dechesne,
2020; Pyle, 2009), thus corticosterone levels primarily reflect
this window of pre-breeding activity at sea (Fairhurst et al.,
2017; Landys et al., 2006), although this time frame may
be influenced by possible effects of later fCort circulation
onto feathers (Aharon-Rotman et al., 2021). The sex of
birds was determined using bill depth (Knechtel, 1998; Pyle,
2008), and only feathers from females were used in this
study. Field work on the Triangle Island ecological reserve
was approved by British Columbia Parks, the Tlatlasikwala
First Nations and the Quatsino First Nations (BC Parks:
102237). All wildlife sampling protocols were approved by
Simon Fraser University Animal Care Services (2010–2014:
974B-94) and Environment Canada’s Western and Northern
Animal Care Committee (2015–2017: 15MH01, 16MH01,
17MH01). Migratory birds scientific permits included BC-
10-0017, BC-11-0016, BC-13-0018, BC-14-0026#1, BC-15-
0005, BC-16-0012 and BC-17-0028. The banding permit for
all years was 10667F.

Corticosterone analysis
fCort analyses followed protocols outlined by Lattin et al.
(2011), using radioimmunoassay for quantification in pg
fCort/mm. Of the feathers collected, 4–7 feathers per bird
were used for the analysis to standardize sample mass
(10 ± 0.2 mg for Cassin’s auklet; 20 ± 0.2 mg for rhinoceros
auklet). To reduce variation, samples were processed in three
batches: first for Cassin’s auklets only for 2010–2011 and
then for each species separately for 2013–2017. In brief,
7 ml of methanol was added to each feather sample. Tubes
were sonicated for 30 minutes, then placed in a shaking
water bath at 50◦C overnight. Feathers were separated
using vacuum filtration and methanol was evaporated using
nitrogen gas flow. The dried extracts were then reconstituted
in 500 μl of Tris–HCl buffer (0.05 M, pH 8). fCort was
quantified by radioimmunoassay and samples were run
in duplicate. For all assays, the Sigma anti-corticosterone
antibody was used (Sigma C8784, St. Louis, MO, USA). For
the Cassin’s auklet samples, the mean intra-assay coefficient

of variation (CV) was 2.85% and the inter-assay CV was
7.27%. For the rhinoceros auklet samples, the mean intra-
assay CV was 3.16% and the inter-assay CV was 14.94%.
Different standardized control pools consisting of pulverized
European starling feathers were used for the assays as they
were completed at different times and therefore we cannot
compute an overall inter-assay CV. Samples smaller than
8 mg for Cassin’s auklets (min = 7.3 mg) or 20 mg for
rhinoceros auklets (min = 19.1 mg) were retained after finding
no evidence of mass bias in our dataset (Cassin’s auklets:
F1,113 = 0.9376, P = 0.335, adjusted R2 = −0.005; Rhinoceros
auklets: F1,79 = 0.0029, P = 0.957, adjusted R2 = −0.013).

Stable isotope analysis
Stable isotope composition was determined using one feather
selected at random from each individual. Each feather was
soaked in 2:1 chloroform:methanol solution for 24 hours
to remove surface oils, rinsed twice with fresh solution and
air dried in a fume hood for at least another 24 hours at
Dalhousie University. These feathers were then analysed at
the Element and Heavy Isotope Analytical Laboratories, Uni-
versity of Windsor Great Lakes Institute for Environmental
Research (2010–2011 samples) or Environment and Climate
Change Canada stable isotope laboratory in Saskatoon, SK
(2014–2017 samples).

At the University of Windsor, feather calami were removed
and the remaining feather material was freeze-dried, minced
to a fine consistency, subsampled, weighed and combusted in
a Costech elemental analyser (Costech International S.P.A.,
Milan, Italy) interfaced with a Thermo Delta V isotope-ratio
mass-spectrometer (Bremen, Germany) to determine δ15N and
δ13C values. For δ15N, standard deviation was ±0.10� for
both internal standard tilapia and NIST standard bovine liver
and for δ13C, within-run standard deviations were ±0.13�
for tilapia and ±0.20� for bovine liver (Larocque et al.,
2021). Additionally, 17 samples were run in duplicate. The
two-way intraclass correlation coefficients (‘icc’, R package
‘irr’) for these duplicates were 0.951 for δ15N and 0.997 for
δ13C. Duplicate samples were averaged to yield single values
prior to analysis.

At the Environment and Climate Change Canada stable
isotope laboratory in Saskatoon, SK, the procedure was
similar but calami were removed prior to soaking and samples
were not freeze dried. Between 0.5 and 1.0 mg of feather mate-
rial was combusted online using a Eurovector 3000 elemental
analyser (Eurovector, Milan, Italy). The resulting CO2 and N2
was separated by gas chromatograph and introduced into a
Nu Horizon (Nu Instruments, Wrexham, UK; www.nu-ins.
com) triple-collector isotope-ratio mass-spectrometer via an
open split and compared to CO2 or N2 reference gas. Using
previously calibrated internal laboratory C and N standards
[powdered keratin (BWBIII; δ13C = −20�; δ15N = 14.4�)
and gelatin (PUGEL; δ13C = −13.6�; δ15N = 4.73�)], within
run (n = 5), precisions for δ15N and δ13C measurements were
± 0.15�.
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Table 1: Models predicting lnfCort for female Cassin’s auklets (P. aleuticus) and rhinoceros auklets (C. monocerata). The global model was
lnfCort∼ Year + Species + Year∗Species. �AICc is the difference between a given model and the top-ranked model, AICw is the Akaike model
weight, model fit provides a measure analogous to R2, and is calculated by 1—model deviance/null model deviance where a fit closer to 1 is best.
Models with �AICc < 2 are in bold

Parameters AICc �AICc AICw Model fit

Year + Species 15.3 0.00 0.864 0.42

Species 20.0 4.77 0.080 0.37

Year + Species + Species∗Year 20.7 5.47 0.056 0.42

Year 77.9 62.63 0.000 0.05

∼1 (null model) 78.9 63.67 0.000 0.00

Results are reported in standard δ notation as parts per
thousand (�) deviation from the international standards
Vienna PeeDee Blemenite (VPDB) for δ13C and atmospheric
air (AIR) for δ15N, respectively (see Appendix Table A2).
Based on replicate measurements of in-house laboratory stan-
dards, measurement precision was estimated to be ±0.2� for
both isotopes.

Statistical analysis
All analyses were run using R version 4.0.2. fCort was natural
log (ln) transformed to best normalize model residuals. Other
variables included species, year, feather δ15N and feather δ13C.
Species and year were treated as categorical predictors, while
feather isotopes and fCort values were continuous.

We first tested for differences in fCort levels between
species using general linear models with the ‘glm’ function,
with species and year as predictor variables of lnfCort. Data
from 2014 to 2017 were used for these models as these years
had data present from both species. The ‘dredge’ function
from the MuMIn package was used to generate all combina-
tions of lnfCort ∼ Species + Year + Species∗Year and to rank
each model with Akaike’s Information Criterion corrected
for small sample sizes (AICc; Burnham and Anderson, 2004).
Only models with �AICc < 2 were further examined.

Following the results of this initial modelling process,
separate general linear regression models for each species
were constructed and assessed using a similar procedure,
where the global model for each species was lnfCort ∼ Year
+ δ13C + δ15N. Again, only models with �AICc < 2 were used
for inference (Burnham and Anderson, 2004). For the top
models between species and within species, the amount of
variance explained by each model was calculated by dividing
the model deviance by the null deviance and subtracting this
value from 1 (‘model fit’).

Tukey tests were also performed for each species to assess
differences in lnfCort across years, based on results of the
model selection (Table 1). Analysis of variance was first con-
ducted using the ‘aov’ function, then the ‘TukeyHSD’ function
from the ‘multcompView’ package was used on the resulting
model at 95% confidence.

Based on significant interannual variation in lnfCort values
in Cassin’s auklets but not in rhinoceros auklets, we explored
the relationship between fCort and fmPDO, an index repre-
senting fluctuations in the Pacific Decadal Oscillation (http://
research.jisao.washington.edu/pdo/PDO.latest). We used averaged
PDO values from February and March of each year (fmPDO),
representing the pre-breeding period most critical to breeding
health (Crossin et al., unpublished work) and when peak
feather growth occurs (Pyle, 2008). A general linear model
was assessed with fmPDO as the predictor and lnfCort as the
dependent variable for each species.

Differences in feather δ15N and δ13C across years were also
explored using the ‘aov’ and ‘TukeyHSD’ function at 95%
confidence to further examine trophic preferences throughout
the Blob. Each isotope was used as a dependent variable with
year as the predictor and tested separately for each species.

Results
When combined data from Cassin’s and rhinoceros auk-
lets were analysed together, lnfCort varied primarily among
species and year (Table 1). We subsequently analysed each
species separately to incorporate the feather isotopes into
the models and to simplify the analysis. The best supported
model for the Cassin’s auklets indicated that lnfCort varied
primarily with year (Table 2). For the rhinoceros auklets, the
top model was the null model with no predictors (Table 2).
Two additional models with �AICc < 2 were also supported
for the rhinoceros auklets, the first with year as the only
predictor of lnfCort and the second with δ13C as the only
predictor (Table 2).

Average lnfCort values of Cassin’s auklets differed across
years, being significantly lower in 2010 and 2011 than in
2014–2017 (Fig. 1B). There was, however, no difference
between lnfCort in 2010 and 2016. From the AICc models
tested for the rhinoceros auklets (Table 2), the null model had
the lowest AICc value, followed by the model that included
year, indicating that fCort did not vary strongly among years.
Follow-up Tukey tests supported this inference for rhinoceros
auklets and indicated there were no interannual differences
in lnfCort across years from 2013 to 2017 (Fig. 1C).
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Table 2: Models predicting lnfCort for female Cassin’s auklets (P. aleuticus) and rhinoceros auklets (C. monocerata), with separate models run for
each species. The global model was lnfCort∼ Year + δ13C + δ15N. �AICc is the difference between a given model and the top-ranked model, AICw
is the Akaike model weight, model fit provides a measure analogous to R2, and is calculated by 1—model deviance/null model deviance where a
fit closer to 1 is best. Models with �AICc < 2 are in bold

Parameters AICc �AICc AICw Model fit

Cassin’s auklets

Year 30.3 0.00 0.561 0.53

δ13C + Year 32.5 2.15 0.191 0.54

δ15N + Year 32.5 2.19 0.187 0.54

δ15N + δ13C + Year 34.8 4.45 0.061 0.54

∼1 (null model) 107 77.1 0.000 0.00

δ15N 109 79.1 0.000 0.00

δ13C 110 79.2 0.000 0.00

δ15N + δ13C 111 81.1 0.000 0.00

Rhinoceros auklets

∼1 (null model) −8.5 0.00 0.287 0.00

Year −7.3 1.21 0.157 0.09

δ 13C −7.3 1.24 0.154 0.01

δ15N −6.5 2.04 0.103 0.00

δ15N + δ13C + Year −6.4 2.09 0.101 0.14

δ15N + Year −5.9 2.63 0.077 0.10

δ13C + Year −5.6 2.87 0.068 0.10

δ15N + δ13C −5.1 3.41 0.052 0.01

Cassin’s auklet lnfCort levels also showed a positive, linear
relationship with fmPDO values (R2 = 0.37; Fig. 2A), while
lnfCort levels in rhinoceros auklets were not significantly
related to the fmPDO index (R2 = 0.04 Fig. 2B).

Tukey tests for feather isotopes showed no difference
across most years for δ13C in either species, apart from 2014
and 2015 for Cassin’s auklets, suggesting little to no change
in foraging area or benthic versus pelagic prey inputs to diets
(Fig. 3A). Values of δ15N showed no difference across years
for the Cassin’s auklets apart from 2014–2015 and 2011–
2015, potentially demonstrating some increase in their prey’s
trophic level in 2014 and 2015. In contrast, δ15N was elevated
from 2015–2017 for the rhinoceros auklets, possibly indicat-
ing prey from higher trophic levels or increased nutritional
stress (Hobson et al., 1993; Fig. 3B). Despite these apparent
trends, no relationship was present between feather isotopes
and lnfCort for either species (Table 2), so changes in isotopes
throughout the Blob were unrelated to measures of fCort.

Discussion
Using data collected over an 8-year period, we examined
the physiological response of female Cassin’s and rhinoceros

auklets during the pre-breeding period to an extreme marine
heatwave in the Northeast Pacific, known as the Blob
(Kintisch, 2015). Here, we reveal interannual differences in
fCort of Cassin’s auklets (Fig. 1B; Table 2), which provides
a measure of the allostatic load or cumulative stress
experienced during the period of feather growth in mid-
winter (February–March; Fairhurst et al., 2017; Studholme
et al., 2019). Additionally, this interannual variation in
fCort was correlated with the strength of a regional index
of climate variability, the Pacific Decadal Oscillation from
which the Blob developed (Fig. 2A). February is a critical
period for female Cassin’s auklets, as variation in productivity
and prey distributions at this time can generate carry-
over effects that influence breeding phenology months
later, such as lay date, egg size and reproductive success
(Crossin et al., unpublished work; Sorensen et al., 2009),
and these environmental conditions can vary considerably
depending on sea surface temperatures (Du and Peterson,
2018; Jones et al., 2018; Piatt et al., 2020). In contrast, female
rhinoceros auklets did not exhibit any fCort differences
across years (Fig. 1C; Table 2), suggesting greater resilience
to climate variation in mid-winter (Fig. 2B). This difference
is consistent with the higher and more stable survival rates
of rhinoceros auklets compared to Cassin’s auklets observed
during previous marine heatwaves (Morrison et al., 2011), as
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Figure 1: Sea surface temperature anomalies during peak feather growth (February–March) from 2010 to 2011 and 2013 to 2017. Years 2010,
2011 and 2013 occurred before the marine heatwave (‘the Blob’) moved closer to shore, in contrast to other years during and following the Blob,
which peaked 2014–2016 (A). Temperature data are from NOAA’s NCEP. Corresponding lnfCort (pg/mm) data for female Cassin’s auklets (P.
aleuticus) and rhinoceros auklets (C. monocerata) are presented, respectively, in (B) and (C). Letters show annual differences from Tukey tests at
95% confidence. For each box, the interior black line represents the median, the box represents the interquartile range, the whiskers show the
minimum and maximum without outliers and the circular points represent outliers.

well as a tendency for higher adaptability in larger seabirds
like rhinoceros auklets than smaller seabirds like Cassin’s
auklets (Sandvik and Einar, 2008).

One of the most conspicuous effects of the Blob was a
reduction in phytoplankton abundance (Kintisch, 2015; Lotze
et al., 2019; Suryan et al., 2021) and a decrease in cold-water
copepods with a northward shift of warm-water copepods
within the migratory range of both auk species (Hipfner
et al., 2020b; Jones et al., 2018; Studholme et al., 2019).
For Cassin’s auklets, which rely heavily on specific cold-
water copepod species (e.g. sub-Arctic Neocalanus cristatus;
Hipfner et al., 2020a), this likely caused a disruption to their
foraging ecology and increased nutritional stress (Jones et al.,
2018). This idea is corroborated by fCort values, which were
lower during the cooler, negative phase of the PDO in 2010
and 2011 prior to the start of the heatwave and higher during
the positive Blob phase (Fig. 2A). Lowered observed fCort
values in cooler years was especially obvious in 2011, when
the PDO was at its most negative phase, likely allowing for
increased primary productivity and available food sources
(Du and Peterson, 2018; Fig. 1A). As well, fCort was higher
than expected in 2017 based on the lowered PDO value

that year (Fig. 2A), potentially related to lagging ecosystem
recovery after a marine heatwave (Suryan et al., 2021).

Although feather isotopes differed across some years
(Fig. 3), they were not strong predictors of fCort (Table 2),
so any changes in diet reflected in the feather isotopes were
unrelated to nutritional stress. Throughout the Blob, some
groups of Cassin’s auklets had modified their migratory
ranges slightly (Studholme et al., 2019), which may explain
small changes in δ13C values across some years, although it
is unlikely this had a significant effect on physiology as the
Blob was far-reaching. Feather δ15N was also slightly elevated
throughout 2015–2017, which may be indicative of feeding
at slightly higher trophic levels, although this change was not
as pronounced as for the rhinoceros auklets. That neither
isotope was a strong predictor of fCort in the Cassin’s auklets
suggests a lower adaptability and potentially less success at
maintaining regular fCort levels. The fCort levels recorded
in this study were from surviving individuals, so increased
fCort throughout the Blob may have promoted increased
foraging effort as prey abundance decreased (Landys et
al., 2006; Wingfield et al., 1998). Future research should
examine links between mid-winter climate and fCort as
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Figure 2: Mean lnfCort (black) and individual lnfCort levels (grey) of female Cassin’s auklets (P. aleuticus) (A) and Rhinoceros auklets (C.
monocerata) (B) compared to the February–March Pacific Decadal Oscillation index (fmPDO) in the year of sample collection. Dashed lines
illustrate a general linear model for Cassin’s auklets (R2 = 0.37, intercept = 1.09, slope = 0.22, std. error = 0.03, P < 0.0001) and rhinoceros auklets
(R2 = 0.04, intercept = 1.17, slope = −0.04, std. error = 0.02, P = 0.09).

a mediator of carryover effects on reproductive processes.
For example, previous studies of other seabird species have
demonstrated links between decreased body condition and
reproductive success with increased fCort (Fairhurst et al.,
2017; Harms et al., 2014). Isotopic and fCort sampling of
birds that do not survive such heatwaves (e.g. from seabird
mass die-offs) compared to those that do would also be
informative.

In contrast, fCort levels in female rhinoceros auklets were
largely unchanged from mid-winter 2013, when the Blob was
forming offshore but had not yet overlapped their migratory
range, to 2014–2016, when the Blob had entirely overlapped
their range and after the Blob’s decline in 2017 (Hipfner
et al., 2020b; Kintisch, 2015; Fig. 1B). This temporal pat-
tern in rhinoceros auklets suggests greater resiliency against
nutritional stress than Cassin’s auklet, possibly related to this
species’ broader diet which includes both zooplankton and
fish, which could buffer against reductions in overall prey
biomass in warm years (Carle et al., 2015; Hipfner et al.,
2013). Changes in feather isotope values and diet were unre-

lated to nutritional stress as any annual variations in fCort
were insignificant for the rhinoceros auklets (Table 2) (Hob-
son et al., 1993). However, feather δ15N was higher during
the Blob in 2015 and 2016, and throughout recovery in 2017
(Fig. 3B), an indication of possible higher trophic-level prey
(Hipfner et al., 2014). As zooplankton populations decrease
and forage fish populations shift in distribution throughout
marine heatwaves (Cavole et al., 2016), stable fCort values
and variable isotopes across the Blob demonstrate the advan-
tages of generalist feeding in rhinoceros auklets (Carle et al.,
2015). Our results therefore indicate higher adaptability to
the Blob in rhinoceros auklets than in Cassin’s auklets. How-
ever, we note that data were collected in only one cold-water
year for the rhinoceros auklets (in 2013) from which no
Cassin’s auklet samples were available and that the pre-Blob
years sampled for each species were different, so we cannot
rule out the possibility of across-year effects having had an
impact on our conclusions drawn about differences across
species. Future studies should confirm these findings with
measurements from the same additional cold years from both
species for comparison.
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Figure 3: Feather isotope (�) data for female Cassin’s auklets (P. aleuticus; CAAU) and rhinoceros auklets (C. monocerata; RHAU) for δ13C,
representing potential differences in use of benthic versus pelagic prey (panel A), and δ15N, representing relative trophic levels (panel B). Letters
show annual differences from Tukey tests for each separate species and isotope at 95% confidence. For each box, the interior black line
represents the median, the box represents the interquartile range, the whiskers show the minimum and maximum without outliers, and the
circular points represent outliers.

As the global climate continues to warm, both the fre-
quency and intensity of marine heatwaves are expected to
increase (Joh and Di Lorenzo, 2017; Oliver et al., 2018).
Increased nutritional stress, die-offs and carryover effects
onto breeding parameters are likely consequences for North
Pacific seabirds including Cassin’s auklets, as recovery time
is decreased between heatwaves (Suryan et al., 2021). Results
of our study suggest that monitoring fCort levels in seabirds
could reveal impacts of climate change on marine ecosystem
health in the Northeast Pacific. In just the past decade, various
record-breaking ocean-warming events have occurred, includ-
ing the ‘Ningaloo Niño’ off Western Australia (Pearce and
Feng, 2013) and the extreme El Niño that affected most of
the Indo-Pacific in 2016 (Benthuysen et al., 2018). Elsewhere,
marine heatwave-related decreases in primary productivity
have also been correlated with decreased survival and breed-
ing success of the following: Atlantic puffins (Fratercula arc-
tica), common terns (Stirna hirundo) and Cory’s shearwater
(Calonectris diomedea) in the Atlantic (Jenouvrier et al.,
2009; Morley et al., 2016; Szostek and Becker, 2015); king
penguins (Aptenodytes patagonicus) in the Southern Ocean

(Le Bohec et al., 2008); and roseate terns (Sterna dougal-
lii) in the western Indian Ocean (Monticelli et al., 2007).
Other marine vertebrates including marine mammals and
fish have also been negatively affected by such phenomena
due to bottom-up effects of ecosystem shifts (Sydeman et al.,
2015). As studies suggest, marine heatwaves will amplify
these effects in the future, causing potentially irreversible
changes to ecosystem health (Laufkötter et al., 2020; Sydeman
et al., 2015).
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Table A1: Annual feather corticosterone (pg/mm) mean, standard deviation, and sample number for female Cassin’s auklets (Ptychoramphus
aleuticus) and rhinoceros auklets (Cerorhinca monocerata)

Year Mean Standard deviation N

Cassin’s auklet

2010 3.16 0.79 14

2011 2.35 0.55 23

2014 4.97 1.46 30

2015 4.76 1.79 19

2016 3.81 0.80 14

2017 4.51 1.66 15

Rhinoceros auklets

2013 3.44 0.83 25

2014 3.24 0.60 24

2015 3.11 0.55 9

2016 2.91 0.81 12

2017 2.88 0.73 11

A. Appendix
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Table A2: Annual feather isotope (�) mean, standard deviation, and sample number of δ15N and δ13C for female Cassin’s auklets (Ptychoramphus
aleuticus) and rhinoceros auklets (Cerorhinca monocerata)

Year Mean (�) Standard deviation (�) N

Cassin’s auklet δ15N δ13C δ15N δ13C

2010 15.22 −18.39 1.29 1.40 14

2011 15.24 −18.41 0.94 1.08 23

2014 14.80 −19.02 1.17 1.61 30

2015 16.26 −17.85 1.23 0.93 19

2016 15.81 −18.28 0.90 0.92 14

2017 15.43 −18.13 0.85 0.94 15

Rhinoceros auklets δ15N δ13C δ15N δ13C

2013 16.12 −17.98 1.39 1.23 25

2014 15.77 −18.43 0.82 0.80 24

2015 17.88 −17.74 0.57 0.98 9

2016 17.22 −18.21 0.89 1.04 12

2017 17.04 −17.69 0.68 1.24 11
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